Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sci Total Environ ; 827: 154299, 2022 Jun 25.
Article in English | MEDLINE | ID: covidwho-1720920

ABSTRACT

The importance of selecting appropriate air pollution monitoring sites in a city is vital for accurately reporting air quality, enhancing the quality of high-resolution modelling and informing policy to implement measures to deliver cleaner air in the urban environment. COVID-19 restrictions impacted air quality in urban centres worldwide as reduced mobility led to changes in traffic-related air pollution (TRAP). As such, it offered a unique dataset to examine the spatial and temporal variations in air quality between monitoring stations in Dublin, Ireland. Firstly, an analysis of mobility data showed reductions across almost all sectors after COVID-19 restrictions came into place, which was expected to lower TRAP. In addition, similar changes in air quality were evident to other cities around the world: reductions in fine particulate matter (PM2.5) and nitrogen dioxide (NO2) concentrations and an increase in ozone (O3) concentrations. Average daily and diurnal concentrations for these three pollutants presented more statistically significant spatial and temporal changes during COVID-19 restrictions at monitoring sites with urban or traffic classifications than suburban background sites. Furthermore, substantial reductions in the range of average hourly pollutant concentrations were observed, 79% for PM2.5 and 75% for NO2, with a modest 24% reduction for O3. Correlation analysis of air pollution between monitoring sites and years demonstrated an improvement in the R2 for NO2 concentrations only, suggesting that spatiotemporal homogeneity was most notable for this TRAP due to mobility restrictions during COVID-19. The spatiotemporal representativeness of monitoring stations across the city will change with greener transport, and air quality during COVID-19 can provide a benchmark to support the introduction of new policies for cleaner air.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , COVID-19/epidemiology , Environmental Monitoring , Humans , Ireland/epidemiology , Nitrogen Dioxide/analysis , Particulate Matter/analysis
SELECTION OF CITATIONS
SEARCH DETAIL